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Fig. 1. Density (in white) and temperature (in black) plot of cross section of 3D smoke simulated using our Fourier spectral method. The data is generated in C
and the pictures are drawn in Matlab.

Fluid animation has become one of the most popular aspects in
physical simulation. It often refers to technique for emulating the
realistic animation for fluid such as water or smoke. Traditionally,
advection-projection scheme is appreciated as the common fluid
solver for its efficiency. We introduced here an original numerical
method under this scheme, based on Fourier spectral approxima-
tions, for simulating fire and smoke. The structure is sufficiently
concise, and thus it is extremely easy to generalize. We will utilize
this method to produce eventually several beautiful fluids.

1 INTRODUCTION
Fluid animation is typically focused on automatically generating
detailed and physically-reasonable visual behavior of a fluid such
as water, smoke and explosions. Current techniques always rely on
approximate solutions to Navier-Stokes equations that govern the
real fluid dynamics:

𝜕u
𝜕t

+ (u · ∇)u = −∇p + f (1)

∇ · u = 0 (2)

We use the standard notation: u for fluid velocity, t for time, p for
pressure and f denotes external forces such as buoyancy and gravity.

Advection-Projection methods are widely used to deal with these
partial differential equations. Fedkiw et al. [2001] presents their
methods to solve these equations in two steps: first we solve the
Equation.1 without pressure term as advection step, then we force
the velocity field u∗ to be imcompressible using a projection method.

u∗ − u
Δ𝑡

+ (𝑢 · ∇)𝑢 = f (3)

∇2𝑝 =
1
Δ𝑡

∇ · u∗ (4)

Equation 4 is solved with a boundary condition 𝜕p
𝜕n = 0. It is indeed

equivalent to compute the Poisson equation with pure Neumann

boundary condition at a boundary point with normaln. The interme-
diate velocity field u then becomes imcompressible by subtracting
the gradient of pressure from it.

u = u∗ − Δ𝑡∇𝑝 (5)

While velocity determines the movement of fluid flow animation,
density 𝜌 and temperature T depict the instantaneous scene at
every single time step. Assuming these scalar qualities are moving
along the velocity field, we construct the equations for evolution of
these two important qualities.

𝜕T
𝜕𝑡

= −(u · ∇)T (6)

𝜕𝜌

𝜕𝑡
= −(u · ∇)𝜌 (7)

At the meantime, the velocity is affected by both density and tem-
perature. For example, especially for smoke, we define the following
simple model to describe these effects such as buoyancy, using the
z-vector (0,0,1), positive constant 𝛼 and 𝛽 and ambient temperature
of the air T𝑎𝑚𝑏 .

f𝑏𝑢𝑜𝑦 = −𝛼𝜌z + 𝛽 (T − T𝑎𝑚𝑏 )z (8)

All the above demonstrates the general scheme of advection-projection.
We will use our Fourier spectral method to solve these equations.
We present how we apply our theorem to handle different type
of partial differential equations in the following section, and we
summarize our algorithm for smoke simulation in Section 3.

2 RELATED WORK
We start by looking at one-dimensional Poisson equation bounded
by periodic circle.

u𝑥𝑥 = 𝑓 (𝑥) 𝑥 ∈ [0, 2𝜋]

We can rewrite both sides in Fourier series, as û and 𝑓 . Then by
plugging into original PDE, it is direct to solve for û and transfer it
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back to real space.

u(𝑥) =
∞∑︁

𝑘=−∞
û(𝑘)𝑒𝑖𝑘𝑥

𝑓 (𝑥) =
∞∑︁

𝑘=−∞
𝑓 (𝑘)𝑒𝑖𝑘𝑥

⇒
∑︁
𝑘

(−𝑘2)û(𝑘)𝑒𝑖𝑘𝑥 =
∑︁
𝑘

∧
𝑓 (𝑘)𝑒𝑖𝑘𝑥

⇒ û(𝑘) = 𝑓 (𝑘)
−𝑘2

Through identical process, we can generalize this computation to
two-dimension, where we obtain û(𝑘𝑥 , 𝑘𝑦) = −𝑓 (𝑘𝑥 , 𝑘𝑦)/(𝑘2𝑥 +𝑘2𝑦).
And three-dimensional results thereby follows similarly.

When we move our concentration to heat equation, as time variant
is involved, numerical method is applied here instead of straight-
forward approach. We derive the following from the elementary
structure u𝑡 = Du𝑥𝑥 of heat equation,

𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
= (−𝑘2D𝑢𝑛+1 − 𝑘2D𝑢𝑛)/2

And we solve for 𝑢𝑛+1,

𝑢𝑛+1 = ( 1
Δ𝑡

+ D
𝑘2

2
)−1 ( 1

Δ𝑡
− D

𝑘2

2
)𝑢𝑛

In addition, if obstacles are introduced to the system, we utilize
predictor-corrector method. For heat equation, we subtract an addi-
tional term on the right-hand side and derive u𝑡 = Δu− 1

𝜂1Ω (u−u𝐵),
where 𝜂 is sufficiently small and 1Ω is the smooth indicator function
constrained by the obstacle Ω. To solve this,

u∗ − u𝑛

Δ𝑡
= (Δu∗ − Δu𝑛)/2 (9)

u𝑛+1 − u∗

Δ𝑡
= − 1

𝜂
1Ω (u − u𝐵) (10)

By separating the calculation into two different steps, we first com-
pute the intermediate value u∗, and thereafter we solve Equation 10
to correct our solution with the obstacle involved.

3 IMPLEMENTATION
We strictly follow the advection-projection scheme that we have
mentioned in Section 1. For each time step, density, temperature
and velocity are all decomposed to different components for our
desired number of dimensions. We solve first for 𝜌 and T based on
their corresponding values and previous-time velocity field. Then
we utilize our model to calculate the f𝑏𝑢𝑜𝑦 , given the initial value of
𝛼 , 𝛽 and T𝑎𝑚𝑏 . It follows that we advect and apply this force to our
velocities and obtain an intermediate field. Finally we compute the
pressure term and rely on this to project our temporary u∗ value
onto the corrected u𝑛+1 for the upcoming time step.

For each time iteration, The algorithm can be rewritten as the fol-
lowing:

(1) Advect density and temperature to 𝜌∗ and T ∗

(2) Transform forward to Fourier space as 𝜌∗ and T̂ ∗

(3) Diffuse using calculated matrices
(4) Transform backward to real space as 𝜌𝑛+1 and T𝑛+1

(5) Calculate external force f𝑏𝑢𝑜𝑦
(6) Advect velocity and apply external force to it as u∗
(7) Transform forward to Fourier space as û∗
(8) Diffuse using calculated matrices
(9) Compute the pressure and subtract its gradient from the

intermediate velocity to obtain û∗2
(10) Transform backward to real space as u𝑛+1

4 RESULTS

(a) Frame 30 (b) Frame 300

(c) Frame 3500 (d) Frame 7000

Fig. 2. Cross section of 3D smoke simulated using our method, where
left part represents density and right part for temperature. The data is
generated in C and the pictures are drawn in Matlab. 𝛼 = 0.01, 𝛽 = 0.001,
and T𝑎𝑚𝑏 = 20.0. Resolution is 64 × 256 × 64 pixels. All other parameters
are set to be the same.

We simulate the smoke plume with a spherical source of fluid sub-
ject to a density-temperature related buoyancy on 𝑦-axis, producing
the phenomena of turbulent breakup of the rising smoke column,
see Fig.2 for its cross section at different time step. We record the
computational time for each simulation in the table below. The code
is running uniquely with GCC.

Resolution Num Time-Steps Δ𝑡 Tot Comp.Time
64 × 256 × 64 30 0.005 ∼11 sec
64 × 256 × 64 300 0.005 ∼110 sec
64 × 256 × 64 3500 0.005 ∼1280 sec
64 × 256 × 64 7000 0.005 ∼2500 sec

The time we recorded includes all costs such as memory alloca-
tion, initial condition setup and file output. It is worth noting that
our method has a decent time of computation in C. Compared to
running in Matlab, it takes only one-third of the time to complete
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the simulation, whereas the other costs for instance approximately
310 seconds to generate 300 frames with same parameters, and
accounted only for iterations.

5 CONCLUSIONS
We follow the conventional advection-projection scheme but apply
Fourier spectral method to solve the Navier-Stokes equations. This
gives an extremely clear algorithmic structure and provides with
significant potential to stylize and generalize. Meanwhile, the com-
putational cost is satisfactory as we are able to generate scenes with
suitable resolution with relatively great efficiency.

When attention is paid to emulate delicate and details-preserved
real-world fluids, the upcoming work is computer graphics treat-
ment to our raw data, including but not limited to ray-tracing and

rendering. The ultimate goal is to produce high-quality fluid flow
animations.

Moreover, we are always willing to promote our method to the
next-level. The Fourier spectral method provides the foundation for
some novel real-time simulation techniques in computer gaming
because of its decent computational costs, and on the other hand it
is able to supplement to some computer graphics methods in pur-
suit of infinite resolution. We believe our method is worth further
exploring.
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